(812) 329–4174; 292–5404; 542–2264; 292–5950
194044, СПб, ул. Чугунная д.20

  • Микроскоп люминесцентный ЛОМО МИКМЕД-2 вариант 11 Микроскоп люминесцентный ЛОМО МИКМЕД-2 вариант 11-1
    Применяется для исследования и наблюдения объектов в свете видимой люминесценции.

  • Микроскоп портативный ЛОМО МИК-М Микроскоп портативный МИК-М
    с магнитным столиком предназначен для исследования различных предметов отраженном свете.

  • Наши последние выигранные котировки и аукционы:

    – Бокситогорская межрайонная больница;

    –Сибирский государственный университет науки и технологий имени Решетнева;

    – Ленинградский областной наркологический диспансер;

    Подписка

Как работает микроскоп

Микроскоп является одним из наиболее важных изобретений человечества, который позволил углубиться в изучение окружающего нас мира. И это невероятное открытие сделал голландский ученый Антон Ван Левенгук. Именно он стал первопроходцем в микроскопии, направив несколько линз на воду и растения и обнаружив, что при определённой установке и порядке крепления линз можно увидеть совершенно новый, скрытый от невооруженного человеческого глаза мир.

Это открытие принесло ученому всемирную славу и признание. За всю свою жизнь он сделал более трёх сотен приборов. На то время они состояли из небольшой сферической линзы, которая имела диаметр примерно в пол сантиметра, предметный столик, который с помощью винта можно было приближать и отдалять от линзы. Штатива не предусматривалось, что было неудобно, так как прибор держали в руках.

Если посмотреть на это изобретение с точки зрения современной оптики, то находку голландского ученого скорее можно отнести к сильной лупе, так как оптическая часть данного прибора имеет только одну линзу.

Постепенно микроскопы эволюционировали и стали более сильными и совершенными. Теперь с их помощью можно рассматривать даже самые маленькие частички нашего мира, клетки, вирусы, бактерии.

Как работает микроскоп

В работе микроскопа присутствует тот же принцип, что и в телескопе-рефлекторе. В телескопе лучи света, когда проходят через стекло или стеклянную линзу, преломляются под определённым углом. Телескоп собирает параллельные лучи воедино в точку фокуса, откуда с помощью окуляра мы можем её видеть. Что касается микроскопа, то тут очень схожий принцип действия. Сперва расходящийся пучок света становится параллельным, после чего преломляется в окуляре, чтоб наблюдающий мог разглядеть картинку.

Как работает микроскоп

  1. Окуляр
  2. Тубус
  3. Держатель
  4. Винт грубой фокусировки
  5. Винт точной (микрометренной) фокусировки
  6. Револьверная головка
  7. Объектив
  8. Предметный столик

Схема микроскопа

  1. Осветитель
  2. Ирисовая полевая диафрагма
  3. Зеркало
  4. Ирисовая апертурная диафрагма
  5. Конденсор
  6. Препарат
  7. Увеличенное действительное промежуточное изображение препарата, образуемое объективом
  8. Увеличенное мнимое окончательное изображение препарата, наблюдаемое в окуляре
  9. Объектив
  10. Окуляр

Функциональные составные микроскопа

Данное оборудование содержит в себе три главные составные части: осветительная, воспроизводящая и визуализирующая. Осветительная составная микроскопа необходима для того, чтоб воссоздавать поток света так, чтоб другие части прибора, как можно точнее делали свою работу. Осветительная часть оборудования для проходящего светового потока находится непосредственно за препаратом, если микроскоп прямой, а если микроскоп инвертированный, то перед объектом и поверх объектива.

Как работает микроскоп

Осветительная составная прибора содержит в себе источник освещения, который может быть представлен лампой, или же электрическим блоком питания, а также всевозможную механическую оптику, в которую входят: конденсоры, коллекторы, полевые и апертурные регулируемые и ирисовые диафрагмы.

Воспроизводящая составная микроскопа нужна для того, чтоб воспроизводить объект непосредственно в горизонтали картинки с необходимым для рассмотрения визуальными качествами и увеличением. Это значит, что воспроизводящая составная нужна для такого отображения картинки в окуляре, какое наиболее точно и детально показывает объект с определённым разрешением для оптики микроскопа передачей цвета и контрастности.

С помощью воспроизводящей части удаётся добиться первой ступени увеличения картинки и находится она за объектом до горизонтали изображения прибора. Воспроизводящие части прибора также имеют объективы, и промежуточные системы стационарной оптики.

Сегодня это оборудование работает с помощью специальных систем объективов и оптики, которые скорректированы на отметку бесконечности. Для этого в приборах используют тубусные системы, благодаря которым параллельные лучи света, выходящие через объектив, соединяются в плоскости картинки в микроскопе.

Визуализирующие составные прибора необходимы для того, чтоб получать настоящую картинку исследуемого предмета на сетчатке, пластине, пленке, на мониторе с большой второй степенью увеличения.

Визуализирующие части в микроскопе находится между камерой или сетчаткой глаза, а также горизонталью картинки объектива. Эти части содержат в себе визуальные насадки монокулярного, бинокулярного или тринокулярного типа со специальными системами наблюдения, которые представляет собой окуляры, работающие по принципу лупы.

Помимо этого, визуализирующая часть микроскопа также содержит в себе дополнительные увеличительные системы, всевозможные насадки для проекции, включая также и дискуссионные для нескольких исследователей. Также система включает в себя приспособления для рисования, проведения анализа, а также фиксирования картинки с определёнными согласующими частями.

Главные способы работы с микроскопом

Как работает микроскоп

Способ светлого поля при проходящих световых лучах применяется для того, чтоб изучить прозрачные объекты с различными неоднородными составляющими. Это могут быть срезы растительной и животной ткани, отдельные минералы, а также самые простые микроорганизмы в жидкости. Конденсор, а также источник света стоят боле низко, чем предметный стол. Картинку объекта формирует световой луч, который проходит сквозь прозрачную часть и поглощается составными частями с более плотной консистенцией. Если есть необходимость увеличить контрастность картинки, то могут добавляться красители, степень концентрации которых увеличивается с плотностью участка объекта.

Светлое поле в отражающемся световом луче необходимо для того, чтоб разглядеть непрозрачные объекты, и всевозможные объекты, из которых нет возможности взять образец для создания полупрозрачных препаратов. Свет на объект исследования проходит через верх, как правило, сквозь объектив, который в этом варианте ещё и служит своеобразным конденсором.

Способ темнопольный и косого освещения применяются для изучения объектов с чрезвычайно низкой контрастностью, таких как прозрачные живые клетки. Свет для изучения предмета подают не снизу, а сбоку, из-за чего появляются тени, благодаря которым становятся явными плотные части. Если освещение конденсора переместить так, чтоб его свет не попадал на объектив, а образец освещался лучами сбоку, можно увидеть белый объектив на черном фоне. Оба данных способа подходят исключительно для таких приборов, в которых можно относительно оси оптики менять расположение конденсора.